Exit time and invariant measure asymptotics for small noise constrained diffusions
Anup Biswas and
Amarjit Budhiraja
Stochastic Processes and their Applications, 2011, vol. 121, issue 5, 899-924
Abstract:
Constrained diffusions, with diffusion matrix scaled by small ϵ>0, in a convex polyhedral cone G⊂Rk, are considered. Under suitable stability assumptions small noise asymptotic properties of invariant measures and exit times from domains are studied. Let B⊂G be a bounded domain. Under conditions, an “exponential leveling” property that says that, as ϵ→0, the moments of functionals of exit location from B, corresponding to distinct initial conditions, coalesce asymptotically at an exponential rate, is established. It is shown that, with appropriate conditions, difference of moments of a typical exit time functional with a sub-logarithmic growth, for distinct initial conditions in suitable compact subsets of B, is asymptotically bounded. Furthermore, as initial conditions approach 0 at a rate ϵ2 these moments are shown to asymptotically coalesce at an exponential rate.
Keywords: Large deviations; Constrained diffusions; Skorokhod problem; Polyhedral domains; Small noise asymptotics; Exit time; Exponential leveling; Coupling; Split chains; Pseudo-atom; Lyapunov functions; Quasi-potential; Invariant measures (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911000184
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:5:p:899-924
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2011.01.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().