EconPapers    
Economics at your fingertips  
 

Convergence of a stochastic particle approximation for fractional scalar conservation laws

Benjamin Jourdain and Raphaël Roux

Stochastic Processes and their Applications, 2011, vol. 121, issue 5, 957-988

Abstract: We are interested in a probabilistic approximation of the solution to scalar conservation laws with fractional diffusion and nonlinear drift. The probabilistic interpretation of this equation is based on a stochastic differential equation driven by an [alpha]-stable Lévy process and involving a nonlinear drift. The approximation is constructed using a system of particles following a time-discretized version of this stochastic differential equation, with nonlinearity replaced by interaction. We prove convergence of the particle approximation to the solution of the conservation law as the number of particles tends to infinity whereas the discretization step tends to 0 in some precise asymptotics.

Keywords: Nonlinear; partial; differential; equations; Interacting; particle; systems; Euler; scheme; [alpha]-stable; Lévy; processes (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(11)00035-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:5:p:957-988

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:121:y:2011:i:5:p:957-988