Riesz transform and integration by parts formulas for random variables
Vlad Bally and
Lucia Caramellino
Stochastic Processes and their Applications, 2011, vol. 121, issue 6, 1332-1355
Abstract:
We use integration by parts formulas to give estimates for the Lp norm of the Riesz transform. This is motivated by the representation formula for conditional expectations of functionals on the Wiener space already given in Malliavin and Thalmaier (2006)Â [13]. As a consequence, we obtain regularity and estimates for the density of non-degenerated functionals on the Wiener space. We also give a semi-distance which characterizes the convergence to the boundary of the set of the strict positivity points for the density.
Keywords: Riesz; transform; Integration; by; parts; Malliavin; calculus; Sobolev; spaces (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(11)00045-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:6:p:1332-1355
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().