EconPapers    
Economics at your fingertips  
 

On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes

Remigijus Mikulevicius and Changyong Zhang

Stochastic Processes and their Applications, 2011, vol. 121, issue 8, 1720-1748

Abstract: The paper studies the rate of convergence of the weak Euler approximation for solutions to SDEs driven by Lévy processes, with Hölder-continuous coefficients. It investigates the dependence of the rate on the regularity of coefficients and driving processes. The equation considered has a nondegenerate main part driven by a spherically symmetric stable process.

Keywords: Levy; processes; Stochastic; differential; equations; Weak; Euler; approximation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911000901
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:8:p:1720-1748

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:121:y:2011:i:8:p:1720-1748