Extremes of the time-average of stationary Gaussian processes
Krzysztof De[combining cedilla]bicki, and
Kamil Tabis
Stochastic Processes and their Applications, 2011, vol. 121, issue 9, 2049-2063
Abstract:
We study the exact asymptotics of , as u-->[infinity], where and {Z(t):t>=0} is a centered stationary Gaussian process with covariance function satisfying some regularity conditions. As an application, we analyze the probability of buffer emptiness in a Gaussian fluid queueing system and the collision probability of differentiable Gaussian processes with stationary increments. Additionally, we find estimates for analogues of Piterbarg-Prisyazhnyuk constants, that appear in the form of the considered asymptotics.
Keywords: Asymptotics; Extremes; Gaussian; process (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911001141
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:9:p:2049-2063
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().