Neighborhood radius estimation for variable-neighborhood random fields
Eva Löcherbach and
Enza Orlandi
Stochastic Processes and their Applications, 2011, vol. 121, issue 9, 2151-2185
Abstract:
We consider random fields defined by finite-region conditional probabilities depending on a neighborhood of the region which changes with the boundary conditions. To predict the symbols within any finite region, it is necessary to inspect a random number of neighborhood symbols which might change according to the value of them. In analogy with the one-dimensional setting we call these neighborhood symbols the context associated to the region at hand. This framework is a natural extension, to d-dimensional fields, of the notion of variable length Markov chains introduced by Rissanen [24] in his classical paper. We define an algorithm to estimate the radius of the smallest ball containing the context based on a realization of the field. We prove the consistency of this estimator. Our proofs are constructive and yield explicit upper bounds for the probability of wrong estimation of the radius of the context.
Keywords: Gibbs; measures; Random; lattice; fields; Variable-neighborhood; random; fields; Context; algorithm; Consistent; estimation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911001025
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:9:p:2151-2185
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().