Affine processes on positive semidefinite d×d matrices have jumps of finite variation in dimension d>1
Eberhard Mayerhofer
Stochastic Processes and their Applications, 2012, vol. 122, issue 10, 3445-3459
Abstract:
The theory of affine processes on the space of positive semidefinite d×d matrices has been established in a joint work with Cuchiero et al. (2011) [4]. We confirm the conjecture stated therein that in dimension d>1 this process class does not exhibit jumps of infinite total variation. This constitutes a geometric phenomenon which is in contrast to the situation on the positive real line (Kawazu and Watanabe, 1971) [8]. As an application we prove that the exponentially affine property of the Laplace transform carries over to the Fourier–Laplace transform if the diffusion coefficient is zero or invertible.
Keywords: Affine processes; Positive semidefinite processes; Jumps; Wishart processes (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491200124X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:10:p:3445-3459
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.06.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().