Fractional P(ϕ)1-processes and Gibbs measures
Kamil Kaleta and
József Lőrinczi
Stochastic Processes and their Applications, 2012, vol. 122, issue 10, 3580-3617
Abstract:
We define and prove existence of fractional P(ϕ)1-processes as random processes generated by fractional Schrödinger semigroups with Kato-decomposable potentials. Also, we show that the measure of such a process is a Gibbs measure with respect to the same potential. We give conditions of its uniqueness and characterize its support relating this with intrinsic ultracontractivity properties of the semigroup and the fall-off of the ground state. To achieve that we establish and analyse these properties first.
Keywords: Symmetric stable process; Fractional Schrödinger operator; Intrinsic ultracontractivity; Decay of ground state; Gibbs measure (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912001184
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:10:p:3580-3617
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.06.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().