EconPapers    
Economics at your fingertips  
 

Fractional P(ϕ)1-processes and Gibbs measures

Kamil Kaleta and József Lőrinczi

Stochastic Processes and their Applications, 2012, vol. 122, issue 10, 3580-3617

Abstract: We define and prove existence of fractional P(ϕ)1-processes as random processes generated by fractional Schrödinger semigroups with Kato-decomposable potentials. Also, we show that the measure of such a process is a Gibbs measure with respect to the same potential. We give conditions of its uniqueness and characterize its support relating this with intrinsic ultracontractivity properties of the semigroup and the fall-off of the ground state. To achieve that we establish and analyse these properties first.

Keywords: Symmetric stable process; Fractional Schrödinger operator; Intrinsic ultracontractivity; Decay of ground state; Gibbs measure (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912001184
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:10:p:3580-3617

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.06.001

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:10:p:3580-3617