On the drawdown of completely asymmetric Lévy processes
Aleksandar Mijatović and
Martijn R. Pistorius
Stochastic Processes and their Applications, 2012, vol. 122, issue 11, 3812-3836
Abstract:
The drawdown process Y of a completely asymmetric Lévy process X is equal to X reflected at its running supremum X¯: Y=X¯−X. In this paper we explicitly express in terms of the scale function and the Lévy measure of X the law of the sextuple of the first-passage time of Y over the level a>0, the time G¯τa of the last supremum of X prior to τa, the infimum X¯τa and supremum X¯τa of X at τa and the undershoot a−Yτa− and overshoot Yτa−a of Y at τa. As application we obtain explicit expressions for the laws of a number of functionals of drawdowns and rallies in a completely asymmetric exponential Lévy model.
Keywords: Spectrally one-sided Lévy process; Reflected process; Drawdown; Fluctuation theory; Excursion theory; Sextuple law (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912001408
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:11:p:3812-3836
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.06.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().