Spectral representation of intrinsically stationary fields
Georg Berschneider
Stochastic Processes and their Applications, 2012, vol. 122, issue 12, 3837-3851
Abstract:
Transferring the concept of processes with weakly stationary increments to arbitrary locally compact Abelian groups two closely related notions arise: while intrinsically stationary random fields can be seen as a direct analog of intrinsic random functions of order k applied by G. Matheron in geostatistics, stationarizable random fields arise as a natural analog of definitizable functions in harmonic analysis. We concentrate on intrinsically stationary random fields related to finite-dimensional, translation-invariant function spaces, establish an orthogonal decomposition of random fields of this type, and present spectral representations for intrinsically stationary as well as stationarizable random fields using orthogonal vector measures.
Keywords: Intrinsically stationary random fields; Stationarizable random fields; Spectral representation (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912001664
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:12:p:3837-3851
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.07.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().