Geometric ergodicity of a bead–spring pair with stochastic Stokes forcing
Jonathan C. Mattingly,
Scott A. McKinley and
Natesh S. Pillai
Stochastic Processes and their Applications, 2012, vol. 122, issue 12, 3953-3979
Abstract:
We consider a simple model for the fluctuating hydrodynamics of a flexible polymer in a dilute solution, demonstrating geometric ergodicity for a pair of particles that interact with each other through a nonlinear spring potential while being advected by a stochastic Stokes fluid velocity field. This is a generalization of previous models which have used linear spring forces as well as white-in-time fluid velocity fields.
Keywords: Geometric ergodicity; Stochastic differential equations; Lyapunov function; Lennard-Jones potential; Averaging (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912001548
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:12:p:3953-3979
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.07.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().