On non-Markovian forward–backward SDEs and backward stochastic PDEs
Jin Ma,
Hong Yin and
Jianfeng Zhang
Stochastic Processes and their Applications, 2012, vol. 122, issue 12, 3980-4004
Abstract:
In this paper, we establish an equivalence relationship between the wellposedness of forward–backward SDEs (FBSDEs) with random coefficients and that of backward stochastic PDEs (BSPDEs). Using the notion of the “decoupling random field”, originally observed in the well-known Four Step Scheme (Ma et al., 1994 [13]) and recently elaborated by Ma et al. (2010) [14], we show that, under certain conditions, the FBSDE is wellposed if and only if this random field is a Sobolev solution to a degenerate quasilinear BSPDE, extending the existing non-linear Feynman–Kac formula to the random coefficient case. Some further properties of the BSPDEs, such as comparison theorem and stability, will also be discussed.
Keywords: Forward–backward stochastic differential equations; Backward stochastic partial differential equations; Nonlinear stochastic Feynman–Kac formula (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491200169X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:12:p:3980-4004
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.08.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().