EconPapers    
Economics at your fingertips  
 

The point process approach for fractionally differentiated random walks under heavy traffic

Ph. Barbe and W.P. McCormick

Stochastic Processes and their Applications, 2012, vol. 122, issue 12, 4028-4053

Abstract: We prove some heavy-traffic limit theorems for some nonstationary linear processes which encompass the fractionally differentiated random walk as well as some FARIMA processes, when the innovations are in the domain of attraction of a non-Gaussian stable distribution. The results are based on an extension of the point process methodology to linear processes with nonsummable coefficients and make use of a new maximal type inequality.

Keywords: Heavy traffic; Point process; Supremum functional; Fractional random walk; FARIMA process; Poisson process (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912001755
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:12:p:4028-4053

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.08.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:4028-4053