Properties of the limit shape for some last-passage growth models in random environments
Hao Lin and
Timo Seppäläinen
Stochastic Processes and their Applications, 2012, vol. 122, issue 2, 498-521
Abstract:
We study directed last-passage percolation on the planar square lattice whose weights have general distributions, or equivalently, queues in series with general service distributions. Each row of the last-passage model has its own randomly chosen weight distribution. We investigate the limiting time constant close to the boundary of the quadrant. Close to the y-axis, where the number of random distributions averaged over stays large, the limiting time constant takes the same universal form as in the homogeneous model. But close to the x-axis we see the effect of the tail of the distribution of the random environment.
Keywords: Corner growth model; Random environment; Limit shape; Last-passage percolation; Queues in series (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911002237
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:2:p:498-521
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2011.08.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().