Hedging electricity swaptions using partial integro-differential equations
Peter Hepperger
Stochastic Processes and their Applications, 2012, vol. 122, issue 2, 600-622
Abstract:
The basic contracts traded on energy exchanges are swaps involving the delivery of electricity for fixed-rate payments over a certain period of time. The main objective of this article is to solve the quadratic hedging problem for European options on these swaps, known as electricity swaptions. We consider a general class of Hilbert space valued exponential jump-diffusion models. Since the forward curve is an infinite-dimensional object, but only a finite set of traded contracts are available for hedging, the market is inherently incomplete. We derive the optimization problem for the quadratic hedging problem under the risk neutral measure and state a representation of its solution, which is the starting point for numerical algorithms.
Keywords: Swaptions; Quadratic hedging; Hilbert space valued jump-diffusion; Infinite-dimensional stochastic analysis; Partial integro-differential equation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911002286
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:2:p:600-622
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2011.09.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().