Effect of truncation on large deviations for heavy-tailed random vectors
Arijit Chakrabarty
Stochastic Processes and their Applications, 2012, vol. 122, issue 2, 623-653
Abstract:
This paper studies the effect of truncation on the large deviations behavior of the partial sum of a triangular array coming from a truncated power law model. Each row of the triangular array consists of i.i.d. random vectors, whose distribution matches a power law on a ball of radius going to infinity, and outside that it has a light-tailed modification. The random vectors are assumed to be Rd-valued. It turns out that there are two regimes depending on the growth rate of the truncating threshold, so that in one regime, much of the heavy tailedness is retained, while in the other regime, the same is lost.
Keywords: Heavy tails; Truncation; Regular variation; Large deviation (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911002298
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:2:p:623-653
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2011.09.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().