EconPapers    
Economics at your fingertips  
 

Splitting trees with neutral Poissonian mutations I: Small families

Nicolas Champagnat and Amaury Lambert

Stochastic Processes and their Applications, 2012, vol. 122, issue 3, 1003-1033

Abstract: We consider a neutral dynamical model of biological diversity, where individuals live and reproduce independently. They have i.i.d. lifetime durations (which are not necessarily exponentially distributed) and give birth (singly) at constant rate b. Such a genealogical tree is usually called a splitting tree [9], and the population counting process (Nt;t≥0) is a homogeneous, binary Crump–Mode–Jagers process.

Keywords: Branching process; Coalescent point process; Splitting tree; Crump–Mode–Jagers process; Linear birth–death process; Allelic partition; Infinite alleles model; Poisson point process; Lévy process; Scale function; Regenerative set; Random characteristic (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911002778
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:3:p:1003-1033

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2011.11.002

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:3:p:1003-1033