An optimal stopping problem for fragmentation processes
Andreas E. Kyprianou and
Juan Carlos Pardo
Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1210-1225
Abstract:
In this article we consider a toy example of an optimal stopping problem driven by fragmentation processes. We show that one can work with the concept of stopping lines to formulate the notion of an optimal stopping problem and moreover, to reduce it to a classical optimal stopping problem for a generalized Ornstein–Uhlenbeck process associated with Bertoin’s tagged fragment. We go on to solve the latter using a classical verification technique thanks to the application of aspects of the modern theory of integrated exponential Lévy processes.
Keywords: Fragmentation processes; Generalized Ornstein–Uhlenbeck processes; Integrated exponential Lévy process (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911003176
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1210-1225
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2011.12.009
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().