EconPapers    
Economics at your fingertips  
 

Permanental vectors

Hana Kogan and Michael B. Marcus

Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1226-1247

Abstract: A permanental vector is a generalization of a vector with components that are squares of the components of a Gaussian vector, in the sense that the matrix that appears in the Laplace transform of the vector of Gaussian squares is not required to be either symmetric or positive definite. In addition, the power of the determinant in the Laplace transform of the vector of Gaussian squares, which is −1/2, is allowed to be any number less than zero.

Keywords: Permanental vectors; Gaussian squares; Infinitely divisible vectors; M-matrices (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491200018X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1226-1247

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.01.009

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1226-1247