EconPapers    
Economics at your fingertips  
 

Large time asymptotic problems for optimal stochastic control with superlinear cost

Naoyuki Ichihara

Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1248-1275

Abstract: The paper is concerned with stochastic control problems of finite time horizon whose running cost function is of superlinear growth with respect to the control variable. We prove that, as the time horizon tends to infinity, the value function converges to a function of variable separation type which is characterized by an ergodic stochastic control problem. Asymptotic problems of this type arise in utility maximization problems in mathematical finance. From the PDE viewpoint, our results concern the large time behavior of solutions to semilinear parabolic equations with superlinear nonlinearity in gradients.

Keywords: Stochastic control; Large time behavior; Hamilton–Jacobi–Bellman equation; Ergodic control (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911003139
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1248-1275

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2011.12.005

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1248-1275