Scalar conservation laws with fractional stochastic forcing: Existence, uniqueness and invariant measure
Bruno Saussereau and
Ion Lucretiu Stoica
Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1456-1486
Abstract:
We study a fractional stochastic perturbation of a first-order hyperbolic equation of nonlinear type. The existence and uniqueness of the solution are investigated via a Lax–Oleĭnik formula. To construct the invariant measure we use two main ingredients. The first one is the notion of a generalized characteristic in the sense of Dafermos. The second one is the fact that the oscillations of the fractional Brownian motion are arbitrarily small for an infinite number of intervals of arbitrary length.
Keywords: Scalar conservation laws; Random perturbations; Variational principle; Deterministic control theory; Hamilton–Jacobi–Bellman equation; Fractional Brownian motion (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000063
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1456-1486
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.01.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().