EconPapers    
Economics at your fingertips  
 

Scalar conservation laws with fractional stochastic forcing: Existence, uniqueness and invariant measure

Bruno Saussereau and Ion Lucretiu Stoica

Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1456-1486

Abstract: We study a fractional stochastic perturbation of a first-order hyperbolic equation of nonlinear type. The existence and uniqueness of the solution are investigated via a Lax–Oleĭnik formula. To construct the invariant measure we use two main ingredients. The first one is the notion of a generalized characteristic in the sense of Dafermos. The second one is the fact that the oscillations of the fractional Brownian motion are arbitrarily small for an infinite number of intervals of arbitrary length.

Keywords: Scalar conservation laws; Random perturbations; Variational principle; Deterministic control theory; Hamilton–Jacobi–Bellman equation; Fractional Brownian motion (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000063
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1456-1486

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.01.005

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1456-1486