Multivariate generalized Ornstein–Uhlenbeck processes
Anita Behme and
Alexander Lindner
Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1487-1518
Abstract:
De Haan and Karandikar (1989) [7] introduced generalized Ornstein–Uhlenbeck processes as one-dimensional processes (Vt)t≥0 which are basically characterized by the fact that for each h>0 the equidistantly sampled process (Vnh)n∈N0 satisfies the random recurrence equation Vnh=A(n−1)h,nhV(n−1)h+B(n−1)h,nh, n∈N, where (A(n−1)h,nh,B(n−1)h,nh)n∈N is an i.i.d. sequence with positive A0,h for each h>0. We generalize this concept to a multivariate setting and use it to define multivariate generalized Ornstein–Uhlenbeck (MGOU) processes which occur to be characterized by a starting random variable and some Lévy process (X,Y) in Rm×m×Rm. The stochastic differential equation an MGOU process satisfies is also derived. We further study invariant subspaces and irreducibility of the models generated by MGOU processes and use this to give necessary and sufficient conditions for the existence of strictly stationary MGOU processes under some extra conditions.
Keywords: Generalized Ornstein–Uhlenbeck process; Invariant subspace; Irreducible model; Lévy process; Multiplicative Lévy process; Stochastic exponential (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000038
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1487-1518
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.01.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().