The transition from ergodic to explosive behavior in a family of stochastic differential equations
Jeremiah Birrell,
David P. Herzog and
Jan Wehr
Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1519-1539
Abstract:
We study a family of quadratic, possibly degenerate, stochastic differential equations in the plane, motivated by applications to turbulent transport of heavy particles. Using Lyapunov functions, Hörmander’s hypoellipticity theorem, and geometric control theory, we find a critical parameter value α1=α2 such that when α2>α1 the system is ergodic and when α2<α1 solutions are not defined for all times.
Keywords: Ergodic property; Stochastic differential equations; Degenerate noise; Invariant (probability) measures; Geometric control theory; Lyapunov functions (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491100322X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1519-1539
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2011.12.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().