A one-dimensional coagulation–fragmentation process with a dynamical phase transition
Cédric Bernardin and
Fabio Lucio Toninelli
Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1672-1708
Abstract:
We introduce a reversible Markovian coagulation–fragmentation process on the set of partitions of {1,…,L} into disjoint intervals. Each interval can either split or merge with one of its two neighbors. The invariant measure can be seen as the Gibbs measure for a homogeneous pinning model (Giacomin (2007) [10]). Depending on a parameter λ, the typical configuration can be either dominated by a single big interval (delocalized phase), or composed of many intervals of order 1 (localized phase), or the interval length can have a power law distribution (critical regime). In the three cases, the time required to approach equilibrium (in total variation) scales very differently with L. In the localized phase, when the initial condition is a single interval of size L, the equilibration mechanism is due to the propagation of two “fragmentation fronts” which start from the two boundaries and proceed by power-law jumps.
Keywords: Mixing time; Coupling; Dynamical phase transition; Coagulation fragmentation model (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000294
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1672-1708
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.02.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().