Large systems of diffusions interacting through their ranks
Mykhaylo Shkolnikov
Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1730-1747
Abstract:
We study the limiting behavior of the empirical measure of a system of diffusions interacting through their ranks when the number of diffusions tends to infinity. We prove that under certain assumptions the limiting dynamics is given by a McKean–Vlasov evolution equation. Moreover, we show that the evolution of the cumulative distribution function under the limiting dynamics is governed by the generalized porous medium equation with convection. The implications of the results for rank-based models of capital distributions in financial markets are also explained.
Keywords: Diffusion processes; McKean–Vlasov equation; Porous medium equation; Particle method; Capital distributions; Rank-based market models (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000208
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1730-1747
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.01.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().