EconPapers    
Economics at your fingertips  
 

On nodal domains and higher-order Cheeger inequalities of finite reversible Markov processes

Amir Daneshgar, Ramin Javadi and Laurent Miclo

Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1748-1776

Abstract: Let L be a reversible Markovian generator on a finite set V. Relations between the spectral decomposition of L and subpartitions of the state space V into a given number of components which are optimal with respect to min–max or max–min Dirichlet connectivity criteria are investigated. Links are made with higher-order Cheeger inequalities and with a generic characterization of subpartitions given by the nodal domains of an eigenfunction. These considerations are applied to generators whose positive rates are supported by the edges of a discrete cycle ZN, to obtain a full description of their spectra and of the shapes of their eigenfunctions, as well as an interpretation of the spectrum through a double-covering construction. Also, we prove that for these generators, higher Cheeger inequalities hold, with a universal constant factor 48.

Keywords: Reversible Markovian generator; Spectral decomposition; Cheeger’s inequality; Principal Dirichlet eigenvalues; Dirichlet connectivity spectra; Nodal domains of eigenfunctions; Optimal partitions of state space; Markov processes on discrete cycles (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000312
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1748-1776

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.02.009

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1748-1776