Linear variance bounds for particle approximations of time-homogeneous Feynman–Kac formulae
Nick Whiteley,
Nikolas Kantas and
Ajay Jasra
Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1840-1865
Abstract:
This article establishes sufficient conditions for a linear-in-time bound on the non-asymptotic variance for particle approximations of time-homogeneous Feynman–Kac formulae. These formulae appear in a wide variety of applications including option pricing in finance and risk sensitive control in engineering. In direct Monte Carlo approximation of these formulae, the non-asymptotic variance typically increases at an exponential rate in the time parameter. It is shown that a linear bound holds when a non-negative kernel, defined by the logarithmic potential function and Markov kernel which specify the Feynman–Kac model, satisfies a type of multiplicative drift condition and other regularity assumptions. Examples illustrate that these conditions are general and flexible enough to accommodate two rather extreme cases, which can occur in the context of a non-compact state space: (1) when the potential function is bounded above, not bounded below and the Markov kernel is not ergodic; and (2) when the potential function is not bounded above, but the Markov kernel itself satisfies a multiplicative drift condition.
Keywords: Feynman–Kac formulae; Non-asymptotic variance; Multiplicative drift condition (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000245
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1840-1865
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.02.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().