Large deviations for multiscale diffusion via weak convergence methods
Paul Dupuis and
Konstantinos Spiliopoulos
Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1947-1987
Abstract:
We study the large deviations principle for locally periodic SDEs with small noise and fast oscillating coefficients. There are three regimes depending on how fast the intensity of the noise goes to zero relative to homogenization parameter. We use weak convergence methods which provide convenient representations for the action functional for all regimes. Along the way, we study weak limits of controlled SDEs with fast oscillating coefficients. We derive, in some cases, a control that nearly achieves the large deviations lower bound at prelimit level. This control is useful for designing efficient importance sampling schemes for multiscale small noise diffusion.
Keywords: Large deviations; Multiscale diffusion; Importance sampling; Rugged energy landscape (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911003140
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1947-1987
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2011.12.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().