Convergence of invariant measures for singular stochastic diffusion equations
Ioana Ciotir and
Jonas M. Tölle
Stochastic Processes and their Applications, 2012, vol. 122, issue 4, 1998-2017
Abstract:
It is proved that the solutions to the singular stochastic p-Laplace equation, p∈(1,2) and the solutions to the stochastic fast diffusion equation with nonlinearity parameter r∈(0,1) on a bounded open domain Λ⊂Rd with Dirichlet boundary conditions are continuous in mean, uniformly in time, with respect to the parameters p and r respectively (in the Hilbert spaces L2(Λ), H−1(Λ) respectively). The highly singular limit case p=1 is treated with the help of stochastic evolution variational inequalities, where P-a.s. convergence, uniformly in time, is established.
Keywords: Stochastic evolution equation; Stochastic diffusion equation; p-Laplace equation; 1-Laplace equation; Total variation flow; Fast diffusion equation; Ergodic semigroup; Unique invariant measure; Variational convergence (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911002961
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:4:p:1998-2017
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2011.11.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().