A sharp estimate for cover times on binary trees
Jian Ding and
Ofer Zeitouni
Stochastic Processes and their Applications, 2012, vol. 122, issue 5, 2117-2133
Abstract:
We compute the second order correction for the cover time of the binary tree of depth n by (continuous-time) random walk, and show that with probability approaching 1 as n increases, τcov=|E|[2log2⋅n−logn/2log2+O((loglogn)8)], thus showing that the second order correction differs from the corresponding one for the maximum of the Gaussian free field on the tree.
Keywords: Cover time; Random walk; Gaussian free field (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000415
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:5:p:2117-2133
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.03.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().