On backward stochastic differential equations and strict local martingales
Hao Xing
Stochastic Processes and their Applications, 2012, vol. 122, issue 6, 2265-2291
Abstract:
We study a backward stochastic differential equation (BSDE) whose terminal condition is an integrable function of a local martingale and generator has bounded growth in z. When the local martingale is a strict local martingale, the BSDE admits at least two different solutions. Other than a solution whose first component is of class D, there exists another solution whose first component is not of class D and strictly dominates the class D solution. Both solutions are Lp integrable for any 0
Keywords: Backward stochastic differential equation; Strict local martingale; Viscosity solution; Comparison theorem (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000361
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:6:p:2265-2291
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.03.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().