EconPapers    
Economics at your fingertips  
 

On the limit distributions of continuous-state branching processes with immigration

Martin Keller-Ressel and Aleksandar Mijatović

Stochastic Processes and their Applications, 2012, vol. 122, issue 6, 2329-2345

Abstract: We consider the class of continuous-state branching processes with immigration (CBI-processes), introduced by Kawazu and Watanabe (1971) [10] and their limit distributions as time tends to infinity. We determine the Lévy–Khintchine triplet of the limit distribution and give an explicit description in terms of the characteristic triplet of the Lévy subordinator and the scale function of the spectrally positive Lévy process, which describe the immigration resp. branching mechanism of the CBI-process. This representation allows us to describe the support of the limit distribution and characterize its absolute continuity and asymptotic behavior at the boundary of the support, generalizing several known results on self-decomposable distributions.

Keywords: Branching processes with immigration; Limit distribution; Stationary distribution; Self-decomposable distribution; Spectrally positive Lévy process; Scale function; Infinitesimal generator (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000452
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:6:p:2329-2345

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.03.012

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:6:p:2329-2345