Sampling per mode for rare event simulation in switching diffusions
Jaroslav Krystul,
François Le Gland and
Pascal Lezaud
Stochastic Processes and their Applications, 2012, vol. 122, issue 7, 2639-2667
Abstract:
A straightforward application of an interacting particle system to estimate a rare event for switching diffusions fails to produce reasonable estimates within a reasonable amount of simulation time. To overcome this, a conditional “sampling per mode” algorithm has been proposed by Krystul in [10]; instead of starting the algorithm with particles randomly distributed, we draw in each mode, a fixed number particles and at each resampling step, the same number of particles is sampled for each visited mode. In this paper, we establish a law of large numbers as well as a central limit theorem for the estimate.
Keywords: Rare event simulation; Switching diffusion; Multilevel splitting; Stratification; Central limit theorem (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000828
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:7:p:2639-2667
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.04.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().