EconPapers    
Economics at your fingertips  
 

On the number of empty boxes in the Bernoulli sieve II

Alexander Iksanov

Stochastic Processes and their Applications, 2012, vol. 122, issue 7, 2701-2729

Abstract: The Bernoulli sieve is the infinite “balls-in-boxes” occupancy scheme with random frequencies Pk=W1⋯Wk−1(1−Wk), where (Wk)k∈N are independent copies of a random variable W taking values in (0,1). Assuming that the number of balls equals n, let Ln denote the number of empty boxes within the occupancy range. In this paper, we investigate convergence in distribution of Ln in the two cases which remained open after the previous studies. In particular, provided that E|logW|=E|log(1−W)|=∞ and that the law of W assigns comparable masses to the neighborhoods of 0 and 1, it is shown that Ln weakly converges to a geometric law. This result is derived as a corollary to a more general assertion concerning the number of zero decrements of nonincreasing Markov chains. In the case that E|logW|<∞ and E|log(1−W)|=∞, we derive several further possible modes of convergence in distribution of Ln. It turns out that the class of possible limiting laws for Ln, properly normalized and centered, includes normal laws and spectrally negative stable laws with finite mean. While investigating the second problem, we develop some general results concerning the weak convergence of renewal shot-noise processes. This allows us to answer a question asked by Mikosch and Resnick (2006) [18].

Keywords: Bernoulli sieve; Continuous mapping theorem; Convergence in distribution; Depoissonization; Infinite occupancy scheme; Renewal shot-noise process (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000713
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:7:p:2701-2729

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.04.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:7:p:2701-2729