On the rate of convergence of simple and jump-adapted weak Euler schemes for Lévy driven SDEs
R. Mikulevicius
Stochastic Processes and their Applications, 2012, vol. 122, issue 7, 2730-2757
Abstract:
The paper studies the rate of convergence of a weak Euler approximation for solutions to possibly completely degenerate SDEs driven by Lévy processes, with Hölder-continuous coefficients. It investigates the dependence of the rate on the regularity of coefficients and driving processes and its robustness to the approximation of the increments of the driving process. A convergence rate is derived for some approximate jump-adapted Euler scheme as well.
Keywords: Parabolic integro-differential equations; Weak Euler scheme; Approximate and jump-adapted Euler schemes (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000841
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:7:p:2730-2757
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.04.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().