One-dimensional stochastic differential equations with generalized and singular drift
Stefan Blei and
Hans-Jürgen Engelbert
Stochastic Processes and their Applications, 2013, vol. 123, issue 12, 4337-4372
Abstract:
Introducing certain singularities, we generalize the class of one-dimensional stochastic differential equations with so-called generalized drift. Equations with generalized drift, well-known in the literature, possess a drift that is described by the semimartingale local time of the unknown process integrated with respect to a locally finite signed measure ν. The generalization which we deal with can be interpreted as allowing more general set functions ν, for example signed measures which are only σ-finite. However, we use a different approach to describe the singular drift. For the considered class of one-dimensional stochastic differential equations, we derive necessary and sufficient conditions for existence and uniqueness in law of solutions.
Keywords: Singular stochastic differential equations; Local times; Generalized drift; Singular drift; Uniqueness in law; Space transformation; Bessel process; Bessel equation (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913001841
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:12:p:4337-4372
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.06.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().