A central limit theorem for stationary random fields
Mohamed El Machkouri,
Dalibor Volný and
Wei Biao Wu
Stochastic Processes and their Applications, 2013, vol. 123, issue 1, 1-14
Abstract:
This paper establishes a central limit theorem and an invariance principle for a wide class of stationary random fields under natural and easily verifiable conditions. More precisely, we deal with random fields of the form Xk=g(εk−s,s∈Zd), k∈Zd, where (εi)i∈Zd are iid random variables and g is a measurable function. Such kind of spatial processes provides a general framework for stationary ergodic random fields. Under a short-range dependence condition, we show that the central limit theorem holds without any assumption on the underlying domain on which the process is observed. A limit theorem for the sample auto-covariance function is also established.
Keywords: Central limit theorem; Spatial processes; m-dependent random fields; Weak mixing (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912001913
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:1:p:1-14
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.08.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().