Limit theorems with asymptotic expansions for stochastic processes
Xiangfeng Yang
Stochastic Processes and their Applications, 2013, vol. 123, issue 1, 131-155
Abstract:
In this paper, we consider some families of one-dimensional locally infinitely divisible Markov processes {ηtϵ}0≤t≤T with frequent small jumps. For a smooth functional F(x[0,T]) on space D[0,T], the following asymptotic expansions for expectations are proved: as ϵ→0,EϵF(ηϵ[0,T])=EF(η0[0,T])+∑i=1sϵi/2EAiF(η0[0,T])+o(ϵs/2) for some Gaussian diffusion η0 as the weak limit of ηϵ, suitable differential operators Ai, and a positive integer s depending on the smoothness of F.
Keywords: Weak convergence; Locally infinitely divisible; Compensating operator; Historical processes (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912001895
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:1:p:131-155
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.08.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().