Abelian theorems for stochastic volatility models with application to the estimation of jump activity
Denis Belomestny and
Vladimir Panov
Stochastic Processes and their Applications, 2013, vol. 123, issue 1, 15-44
Abstract:
In this paper, we prove a kind of Abelian theorem for a class of stochastic volatility models (X,V) where both the state process X and the volatility process V may have jumps. Our results relate the asymptotic behavior of the characteristic function of XΔ for some Δ>0 in a stationary regime to the Blumenthal–Getoor indexes of the Lévy processes driving the jumps in X and V. The results obtained are used to construct consistent estimators for the above Blumenthal–Getoor indexes based on low-frequency observations of the state process X. We derive convergence rates for the corresponding estimator and show that these rates cannot be improved in general.
Keywords: Affine stochastic volatility model; Abelian theorem; Blumenthal–Getoor index (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912001925
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:1:p:15-44
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.08.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().