Regularity properties of viscosity solutions of integro-partial differential equations of Hamilton–Jacobi–Bellman type
Shuai Jing
Stochastic Processes and their Applications, 2013, vol. 123, issue 2, 300-328
Abstract:
We study the regularity properties of integro-partial differential equations of Hamilton–Jacobi–Bellman type with the terminal condition, which can be interpreted through a stochastic control system, composed of a forward and a backward stochastic differential equation, both driven by a Brownian motion and a compensated Poisson random measure. More precisely, we prove that, under appropriate assumptions, the viscosity solution of such equations is jointly Lipschitz and jointly semiconcave in (t,x)∈Δ×Rd, for all compact time intervals Δ excluding the terminal time. Our approach is based on the time change for the Brownian motion and on Kulik’s transformation for the Poisson random measure.
Keywords: Backward stochastic differential equations; Brownian motion; Poisson random measure; Time change; Kulik transformation; Lipschitz continuity; Semiconcavity; Viscosity solution; Value function (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491200213X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:2:p:300-328
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.09.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().