EconPapers    
Economics at your fingertips  
 

An empirical process interpretation of a model of species survival

Iddo Ben-Ari

Stochastic Processes and their Applications, 2013, vol. 123, issue 2, 475-489

Abstract: We study a model of species survival recently proposed by Michael and Volkov. We interpret it as a variant of empirical processes, in which the sample size is random and when decreasing, samples of smallest numerical values are removed. Micheal and Volkov proved that the empirical distributions converge to the sample distribution conditioned not to be below a certain threshold. We prove a functional central limit theorem for the fluctuations. There exists a threshold above which the limit process is Gaussian with variance bounded below by a positive constant, while at the threshold it is half-Gaussian.

Keywords: Species survival; Fitness; Central limit theorem; Empirical process (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002104
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:2:p:475-489

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.09.009

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:2:p:475-489