Randomly weighted self-normalized Lévy processes
Péter Kevei and
David M. Mason
Stochastic Processes and their Applications, 2013, vol. 123, issue 2, 490-522
Abstract:
Let (Ut,Vt) be a bivariate Lévy process, where Vt is a subordinator and Ut is a Lévy process formed by randomly weighting each jump of Vt by an independent random variable Xt having cdf F. We investigate the asymptotic distribution of the self-normalized Lévy process Ut/Vt at 0 and at ∞. We show that all subsequential limits of this ratio at 0 (∞) are continuous for any nondegenerate F with finite expectation if and only if Vt belongs to the centered Feller class at 0 (∞). We also characterize when Ut/Vt has a non-degenerate limit distribution at 0 and ∞.
Keywords: Lévy process; Feller class; Self-normalization; Stable distributions (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002190
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:2:p:490-522
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.10.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().