EconPapers    
Economics at your fingertips  
 

A first order phase transition in the threshold θ≥2 contact process on random r-regular graphs and r-trees

Shirshendu Chatterjee and Rick Durrett

Stochastic Processes and their Applications, 2013, vol. 123, issue 2, 561-578

Abstract: We consider the discrete time threshold-θ contact process on a random r-regular graph. We show that if θ≥2, r≥θ+2, ϵ1 is small and p≥p1(ϵ1), then starting from all vertices occupied the fraction of occupied vertices is ≥1−2ϵ1 up to time exp(γ1(r)n) with high probability. We also show that for p2<1 there is an ϵ2(p2)>0 so that if p≤p2 and the initial density is ≤ϵ2(p2), then the process dies out in time O(logn). These results imply that the process on the r-tree has a first-order phase transition.

Keywords: Threshold contact process; Random regular graphs; Isoperimetric inequality; First order phase transition; Binomial large deviations (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002189
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:2:p:561-578

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.10.001

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:2:p:561-578