Nonparametric estimation of the local Hurst function of multifractional Gaussian processes
Jean-Marc Bardet and
Donatas Surgailis
Stochastic Processes and their Applications, 2013, vol. 123, issue 3, 1004-1045
Abstract:
A new nonparametric estimator of the local Hurst function of a multifractional Gaussian process based on the increment ratio (IR) statistic is defined. In a general frame, the point-wise and uniform weak and strong consistency and a multidimensional central limit theorem for this estimator are established. Similar results are obtained for a refinement of the generalized quadratic variations (QV) estimator. The example of the multifractional Brownian motion is studied in detail. A simulation study is included showing that the IR-estimator is more accurate than the QV-estimator.
Keywords: Nonparametric estimators; Hurst function; Tangent process; Multifractional Brownian motion; Gaussian process; Central limit theorem (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002499
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:3:p:1004-1045
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.11.009
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().