EconPapers    
Economics at your fingertips  
 

A nonlinear stochastic heat equation: Hölder continuity and smoothness of the density of the solution

Yaozhong Hu, David Nualart and Jian Song

Stochastic Processes and their Applications, 2013, vol. 123, issue 3, 1083-1103

Abstract: In this paper, we establish a version of the Feynman–Kac formula for multidimensional stochastic heat equation driven by a general semimartingale. This Feynman–Kac formula is then applied to study some nonlinear stochastic heat equations driven by nonhomogeneous Gaussian noise: first, an explicit expression for the Malliavin derivatives of the solutions is obtained. Based on the representation we obtain the smooth property of the density of the law of the solution. On the other hand, we also obtain the Hölder continuity of the solutions.

Keywords: Fractional noise; Stochastic heat equations; Feynman–Kac formula; Exponential integrability; Absolute continuity; Hölder continuity; Chaos expansion (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491200244X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:3:p:1083-1103

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.11.004

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:3:p:1083-1103