Scaling limits of coupled continuous time random walks and residual order statistics through marked point processes
A. Barczyk and
P. Kern
Stochastic Processes and their Applications, 2013, vol. 123, issue 3, 796-812
Abstract:
A continuous time random walk (CTRW) is a random walk in which both spatial changes represented by jumps and waiting times between the jumps are random. The CTRW is coupled if a jump and its preceding or following waiting time are dependent random variables (r.v.), respectively. The aim of this paper is to explain the occurrence of different limit processes for CTRWs with forward- or backward-coupling in Straka and Henry (2011) [37] using marked point processes. We also establish a series representation for the different limits. The methods used also allow us to solve an open problem concerning residual order statistics by LePage (1981) [20].
Keywords: Continuous time random walk; Operator stable law; Lévy process; Marked point process; Order statistics; Series representation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002402
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:3:p:796-812
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.10.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().