Unified asymptotic theory for nearly unstable AR(p) processes
Boris Buchmann and
Ngai Hang Chan
Stochastic Processes and their Applications, 2013, vol. 123, issue 3, 952-985
Abstract:
A unified asymptotic theory for nearly unstable higher order autoregressive processes and their least squares estimates is established. A novel version of Jordan’s canonical decomposition with perturbations together with a suitable plug-in principle is proposed to develop the underlying theories. Assumptions are stated in terms of the domain of attraction of partial Fourier transforms. The machinery is applied to recapture some of the classical results with the driving noise being martingale differences. Further, we show how to extend the results to higher order fractional ARIMA models in nearly unstable settings, thereby offering a comprehensive theory to analyse nearly unstable time series.
Keywords: Fractional Brownian motion; Jordan canonical form; Least squares; Lévy area; Nearly unstable autoregressive model; Unit root test (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002153
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:3:p:952-985
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.09.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().