EconPapers    
Economics at your fingertips  
 

Unified asymptotic theory for nearly unstable AR(p) processes

Boris Buchmann and Ngai Hang Chan

Stochastic Processes and their Applications, 2013, vol. 123, issue 3, 952-985

Abstract: A unified asymptotic theory for nearly unstable higher order autoregressive processes and their least squares estimates is established. A novel version of Jordan’s canonical decomposition with perturbations together with a suitable plug-in principle is proposed to develop the underlying theories. Assumptions are stated in terms of the domain of attraction of partial Fourier transforms. The machinery is applied to recapture some of the classical results with the driving noise being martingale differences. Further, we show how to extend the results to higher order fractional ARIMA models in nearly unstable settings, thereby offering a comprehensive theory to analyse nearly unstable time series.

Keywords: Fractional Brownian motion; Jordan canonical form; Least squares; Lévy area; Nearly unstable autoregressive model; Unit root test (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002153
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:3:p:952-985

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.09.014

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:3:p:952-985