On the density of the supremum of a stable process
A. Kuznetsov
Stochastic Processes and their Applications, 2013, vol. 123, issue 3, 986-1003
Abstract:
We study the density of the supremum of a strictly stable Lévy process. Our first goal is to investigate convergence properties of the series representation for this density, which was established recently by Hubalek and Kuznetsov (2011) [24]. Our second goal is to investigate in more detail the important case when α is rational: we derive an explicit formula for the Mellin transform of the supremum. We perform several numerical experiments and discuss their implications. Finally, we state some interesting connections that this problem has to other areas of Mathematics and Mathematical Physics and we also suggest several open problems.
Keywords: Stable process; Supremum; q-series; q-Pochhammer symbol; Continued fractions; Diophantine approximations; Double gamma function; Barnes function; Dilogarithm; Quantum dilogarithm (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002414
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:3:p:986-1003
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.11.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().