A fractional credit model with long range dependent default rate
Francesca Biagini,
Holger Fink and
Claudia Klüppelberg
Stochastic Processes and their Applications, 2013, vol. 123, issue 4, 1319-1347
Abstract:
Motivated by empirical evidence of long range dependence in macroeconomic variables like interest rates we propose a fractional Brownian motion driven model to describe the dynamics of the short and the default rate in a bond market. Aiming at results analogous to those for affine models we start with a bivariate fractional Vasicek model for short and default rate, which allows for fairly explicit calculations. We calculate the prices of corresponding defaultable zero-coupon bonds by invoking Wick calculus. Applying a Girsanov theorem we derive today’s prices of European calls and compare our results to the classical Brownian model.
Keywords: Credit risk; Defaultable bond; Default rate; Derivatives pricing; Fractional Brownian motion; Fractional Vasicek model; Hazard rate; Interest rate; Long range dependence; Macroeconomic variables process; Option pricing; Prediction; Short rate; Wick product (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002670
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:4:p:1319-1347
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.12.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().