Splitting trees with neutral Poissonian mutations II: Largest and oldest families
Nicolas Champagnat and
Amaury Lambert
Stochastic Processes and their Applications, 2013, vol. 123, issue 4, 1368-1414
Abstract:
We consider a supercritical branching population, where individuals have i.i.d. lifetime durations (which are not necessarily exponentially distributed) and give birth (singly) at constant rate. We assume that individuals independently experience neutral mutations, at constant rate θ during their lifetimes, under the infinite-alleles assumption: each mutation instantaneously confers a brand new type, called allele or haplotype, to its carrier. The type carried by a mother at the time when she gives birth is transmitted to the newborn.
Keywords: Branching process; Coalescent point process; Splitting tree; Crump–Mode–Jagers process; Linear birth–death process; Allelic partition; Infinite alleles model; Extreme values; Mixed Poisson point process; Cox process; Lévy process; Scale function (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002530
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:4:p:1368-1414
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.11.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().